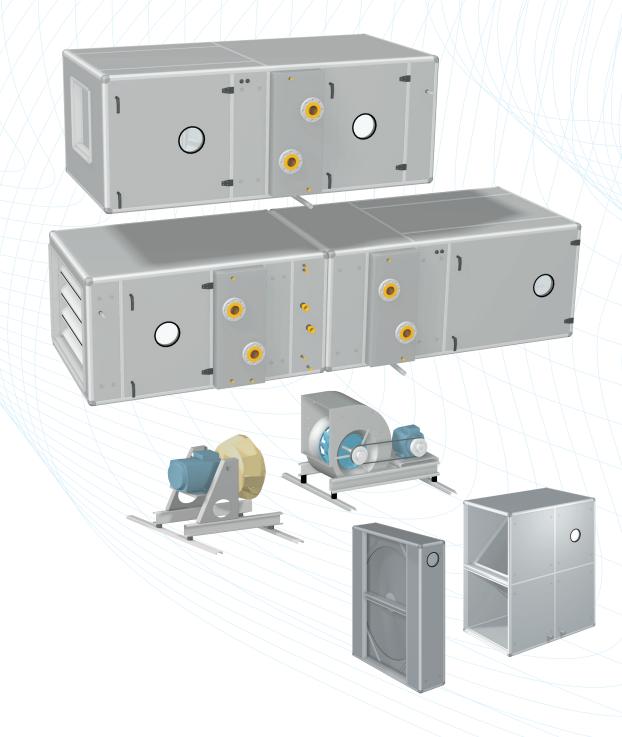
www.koja-russia.ru +7 (495) 204-30-01 8 (800) 775-42-13 E-mail: info@koja-russia.ru



Air Handling Unit Future

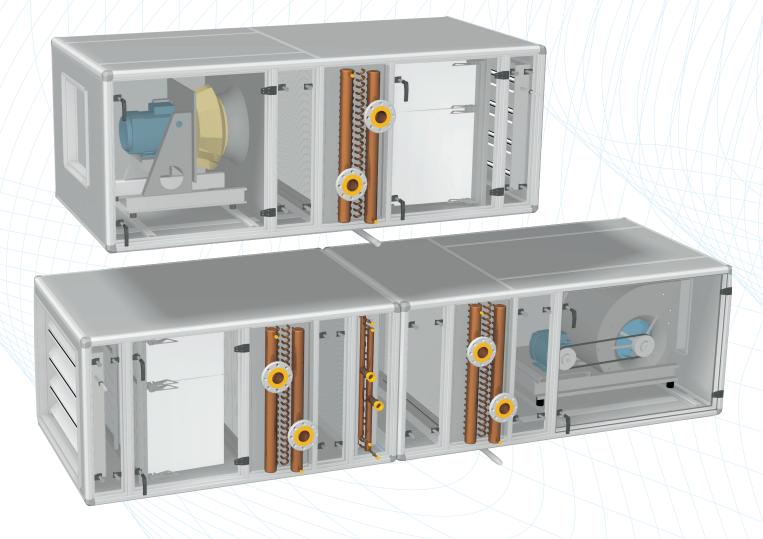
Future - versatile air handling

The air handling unit Future is the answer to the tough requirements set by the market and authorities. This high-quality product is the result of a careful design, consistent quality assurance and state-of-the-art manufacturing techniques. The most important feature of Future is that it is suitable for practically any air handling purpose. The wide selection includes an air handling unit with a suitable size, flow rate capacity and component combination for every application.

The Koja Group has contributed significantly to the branch's development by participating in different R&D projects. The results of these projects, including the knowledge and experience gained, were all put to use in the design of the air handling unit Future.

Carefully selected components, incomparable mechanical, thermal and flow performance, and conformity with the design and tightness requirements of CEN standards are a guarantee that Future comes up even to the highest customer expectations.

Unit	Width	Height mm	Face area m ²	Filter	0.2	0.2	04.0			e capacity m³/				6	7 0	10			0 40	
0603	790	470	0,21		1		2				2 () 4	r J	0	10	10	/ _/	5 5	0 40	,
							1	1,5	22,	5 3 3,5 4 m/s										
0605	790	670	0,34				1	1,5	5 2	2,5 3 3,5 4	m/s									
0606	790	790	0,42					1	1	5 2 2,5 3	3,5 4 m/	s								
0906	1070	790	0,60						1	1,5 2	2,5 3 3	,54 n	n/s							
0909	1070	1070	0,86						1	1,5 2 2	,5 3 3,5	4 m/s				$\left \right $				
1206	1350	790	0,78							1 1,5	2 2,5	3 3,5	4 m/s	\$		$\left \right $				
1208	1350	990	1,02								2 2,5			_		$\left \right $				
1209	1350	1070	1,12							1 1,5			┍┼			$\left \right $				
1210	1350	1190																		
1212	1350	1350	1,46						\square		1,5 2 2 2,5					$\left \right $				
1506	1670	790	0,99							i i i i i i i i i i i i i i i i i i i	1,5 2	-				\square				
1509	1670	1070	1,42								1	2,3				$\left \right $				
1512	1670	1350	1,85							1				2,5						
1515	1670	1670	2,34								1	1,5					m/s			
1809	1990	1070	1,71	<u>⊞</u>						1	1,5			3,5 4	++					
1810	1990	1190	1,93	±==						1	-	2	<u>,</u> ▲;			\vdash				
1812	1990	1350	2,23								1	1,5				++				
1815	1990	1670	, í								1		i i				5 4 m/s			
1818	1990	1990	3,42									1			⊢ ▲		3 3,5 4 m/s			
2409	2550	1070	2,23								1	1,5		2,5						
2412	2550	1350	2,90	===							1	<u> </u>					,5 4 m/s			
2415	2550	1670	3,68	▦								1		1,5	2 2	2,5	3 3,5 4 m/s			
2418	2550	1990	4,45	▦									1	1,	5		2,5 3 3,5 4			
2421	2550	2310	5,23	Ħ										1	1,5	K	2 2,5 3 3,5	4 m/s		
2424	2550	2550	5,81											1	1,5		2 2,5 3 3	,5 4 m/s		
3015	3190	1670	4,65										1		1,5	2	2,5 3 3,5 4	m/s		
3018	3190	1990	5,63											1	1,5		2 2,5 3 3,	54 m/s		
3021	3190	2310	6,61											1		1,5	5 2 2,5 3	3 3,5 4 r	n/s	
3024	3190	2550	7,34												1		1,5 2 2,5	3 3,5	4 m/s	
3624	3790	2550													1	5	1,5 2	2,5 3 3	3,54 n	n/s
3627	3790	2870														4	1,5	2 2,5	3 3,5 4	4 m/s
	3790																1 1,5	2 2,5	3 3,5	54 m/s


The recommended maximum flow rates for functional sections

Damper and control sections Filter section Heat recovery section, coil Heat recovery section, rotor Heat recovery section, plate 4 m³/s 4 m³/s 3,5 m³/s 3,5 m³/s 3,5 m³/s Heating section, water Heating section, electricity Cooling section Fan section Humidifier section Sound attenuator section 4 m³/s 4 m³/s (min. 2 m 2,5 m³/s (with dro 4 m³/s 3 m³/s

4 m³/s

(min. 2 m³/s) (with drop separator 3,5 m³/s)

High-quality indoor air with air handling unit Future

Tight construction is an important factor in good indoor air quality

A successfull HEPAC project requires expertise not only in the design and implementation but also in the selection of required equipment. Equally important are instructions for service to ensure good indoor air quality at all times during the operation of the equipment.

The air handling unit Future was designed with a great emphasis on indoor air quality factors such as a tight casing and a tight seal between the filter and frame.

High-standard casing design

The casing frame consists of closed, hot-galvanized steel profiles and corner fittings made of aluminium.

The covering plates and access doors have double construction. They are made of hot-galvanized steel plate and insulated with nonflammable mineral wool.

The casing is put together by means of adhesive or screws, so it can be dismantled and assembled again without the solidness or tightness being affected.

The construction of the corner profiles of access doors makes possible even the tightness classa A1 where extremely tough requirements are set for tightness, energy economy and noise level.

High hygiene level

The hygiene model, Future Clean, is the solution when the air needs to be cleaner than clean.

The casing of Future is made of washable and disinfectable material, and it is absolutely tight inside.

The cleaning of functional sections is made easy by large access doors fixed, if necessary, on hinges, and pull-out components. Moreover, Future can be mounted in a declination of 1...2% so that the cleaning water flows out through section-specific water outlets.

The fan section can be equipped with a mixed-flow fan with direct drive or a centrifugal fan with belt drive.

Sound attenuator lamellas are finished with dry or wet cleanable material. The lamellas can be removed for cleaning through an access door.

Cornerstone of economy management: optimization of life-cycle costs

The life-cycle costs of an air-conditioning system consist of investment, operation, maintenance and disposal. Most of the operational costs are caused by the thermal energy needed for heating, cooling and humidifying air, and fan and pump motors' consumption of electricity.

The air handling unit Future features several different functions to recover heat, and the most economical fan for every application is to be found from the wide Future selection of fans of several types and sizes.

Short delivery times and efficient quality control

Development of company activities in conformance with the ISO 9001 quality system requirements, harmonization of procedures, assurance of performances and establishment of follow-up procedures have made it possible to further increase the quality of products and activities and shorten delivery times.

Measurements and inspections are carried out at every stage of the production process all the way from the receiving of materials and components to the final testing of the finished product according to a predetermined sampling plan.

State-of-the-art production technology and modern production plants

Modern, accurate and partly automated production equipment and techniques in Jalasjärvi production plant guarantee the continuing high quality of Future air handling units produced. Well-thought-out production plans, efficient logistics, and the modular construction and standardized components of Future make the large selection of functions and sizes and prompt deliveries possible.

Delivery in comprehensive assemblies - easy to install

The frame made of steel profiles makes the air handling unit Future extremely solid. If delivered ready assembled and fixed on the base frame, the installation of a Future unit very simple. If this kind of delivery is not possible, the unit can be delivered in blocks or functional modules.

The product are packed in durable, tight material for transportation and storage at the construction site.

Every Future delivery includes instructions for transport, storage, installation, operation and service.

Service and maintenance essential elements of economy

The air handling unit Future is designed considering the easy of service, maintenance and cleaning for instance by reserving enough space. There are no holes or corners gather dirt inside the casings. The fastenings of components open downwards and are so constructed that they cannot gather any water. The components can be pulled out or the space required for service and maintenance is arranged in another way. If necessary, to get more space or to be able to carry out all the required service or maintenance work, the covering plates can be removed.

Access doors have latches with detachable handles. They can also be hinged, especially large doors, to make them easier to handle. The seals of an access door are attached to the door to protect them from getting damaged during service and maintenance.

Special Future functions - a guarantee for a long life cycle

Dampers

In the design dampers, special attention was paid to tightness, thermal insulation, and energy economy. The dampers have opposed, heat-insulated blades with sealings of silicon rubber in between.

Filters

The selection of filters for Future is large, offering numerous options. The level of filtration can be selected according to the set requirements, taking into consideration the effect of filtering on the life-cycle costs. There are several filters of different filter calsses, materials and filtering areas to choose from. Filter casings come in three lengths.

Particle filters are made of synthetic material or fibreglass. Chemical filtration is carried out by means of activated carbon.

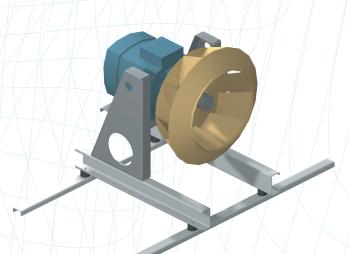

Heat exchangers

The coil exchangers used in Future air handling units are manufactured by Koja. This means that the face area, lamella profile, lamella thickness, and lamella spacing can be easily varied according to the exchanger application to optimize the heat effect and pressure drop.

Heat recovery, heating and cooling

There are three different types of heat exchangers available for recovering heat from exhaust air. Fluid exchanger and plate exchanger transfer heat; rotating exchanger transfers both heat and humidity. The heat exchanger is selected according to the application, available space, and exhaust air quality.

For heating the air, an exchanger with water circulation or an electric exchanger can be used. For cooling, there are fluid exchanger and direct-evaporation exchanger to choose from.



Fans

Future air handling units can be equipped with different kinds of fans, depending on the prevailing conditions. The fan selection includes a centrifugal fan of very high efficiency. For small and medium air flow volumes, the most suitable options are the practically service-free mixed-flow fan with direct drive controlled by a frequency transformer. This offers an excellent efficiency, and is capable of regulating air flow and pressure within a wide range.

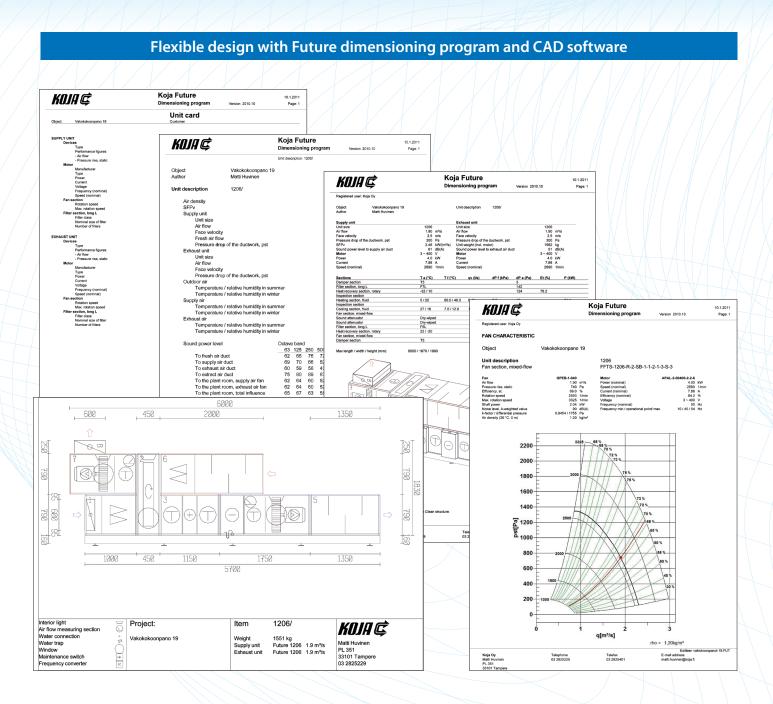
There are as many as three different fan sizes available for one Future unit size to make sure thet the efficiency can be maximized and the operating/maintenance costs minimized in all conditions, .

The fan can be equipped with a volume flow meter to control the air flow during the installation of an air-conditioning plant and, later, to achieve the desired air flow rate in the most economical way.

Sound attenuators

The wide selection of sound attenuators includes straight attenuators of different lenghts and highly efficient angular attenuators with lamellas or with the inside covered with sound absorbing material. Sound attenuator lamellas are finished with dry or wet cleanable material. The lamellas can be removed for cleaning through an access door.

Humidifiers


Air is humidified with a cellular humidifier operated by once-through or circulating water. The degree of humidity can be set at 65%, 85% or 95%. The available control methods are on-off control, step control and dew-point control.

The casing of the humidifier section also features an extra connection to connect steam pipes if desired.

Free section

This largest selection of air handling unit sizes and sections on the market, has been further extended by one more option, the so-called free section. The casing of this section is heat-insulated and is available in many lengths. Inside the casing, several different parts and components for handling air, controlling the air flow, or monitoring the unit operation can be installed.

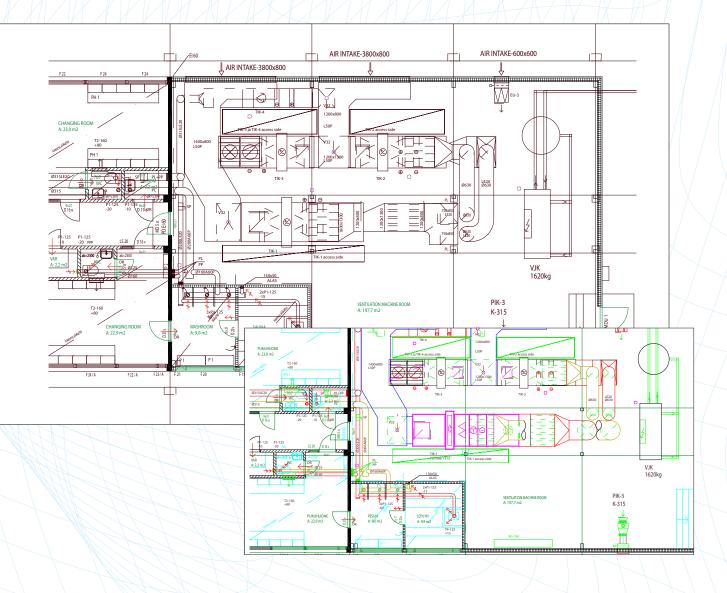
The components of the free section can be adapted to the dimensioning of the air handling unit and the state of the air handled. In addition, there is a large number of accessories available for this section.

Dimensioning program a tool for total project management

The dimensioning program for the air handling unit Future is a valuable tool for unit selection, economical unit design, and data transfer at all stages of every individual project.

Energy economy the connecting thread of a design process

The dimensioning program helps to find the most suitable air handling unit with the most suitable combination of sections from the largest selection on the market and this way to maximize the efficiency and minimize the operating/maintenance costs. The program features a function for comparing the SFP values of different unit sizes at the beginning of the design process, which facilitates the selection of the most economical unit for every application.


Right units to right conditions

The dimensioning program contains data on the design input, design requirements, components, and accessories of some typical air handling units. This data can be adapted to varying requirements and stored in a project-specific directory for future reference.

Documents up to date

Printed technical data produced by the dimensioning program can be included in the project documentation without further processing. Dimensional drawings can be printed out to any desired scale to facilitate the design of the Future unit's duct connections, and to speed up the installation.

8

Image files from Future design program directly to CAD program

From the Future design program, the drawing of an air handling unit can be transferred to a CAD program. The drawing contains symbols and other details generally used by HEPAC designers, and it can be transferred as a 2D drawing or 3D model. The dimensioning program has a CAD application for AutoCad R14 and AutoCad 2000, which can be used to open drawings from Future project files as AutoCad blocks. The Future design program also features a DXF translator for translating Future project files into dxf-files, which can be read in different CAD applications, e.g. Auto-CAD LT.

Clear impression of space requirements

An image file of the Future dimensioning program can be transferred to a CAD system as a 2D drawing or 3D model. In the case of a 2D drawing, there are 6 different projections available. To facilitate the further processing of image files, modules / functional sections and symbols are displayed on different levels. The space required by the air handling unit can be easily determined when the unit is drawn in the right place and precisely to scale.

Main dimensions and weights of standard assemblies

Length (mm) Weight (kg)							
Size	В	н					
Jile	(mm)	(mm)	Assembly 2	Assembly 3	Assembly 16	Assembly 17	
0603	790	470	3700	4550	3800	3800	
0605	790	670	283 3950	346 4800	364 3950	428 3950	
		0,0	361	437	462	538	
0606	790	790	3950 396	4800 481	3950 507	3950 595	
0906	1070	790	3950	4800	3950	3950	
0909	1070	1070	511 4000	619 4850	648 4000	755 4000	
0,0,	1070	10/0	614	746	792	924	
1206	1350	790	3950 610	4800 738	3950 774	3950 902	
1208	1350	990	4200	5050	4200	4200	
1209	1350	1070	727 4200	876	919 4200	1068 4200	
1209	1350	10/0	754	912	957	1125	
1210	1350	1190	4200 810	5050 993	4200 1046	4200 1215	
1212	1350	1350	4300	5150	4300	4300	
1506	1(70	700	914	1099	1177	1361	
1506	1670	790	3950 706	4800 859	3950 901	3950 1054	
1509	1670	1070	4200	5050	4200	4200	
1512	1670	1350	904 4400	1090 5250	1148 4400	1348 4400	
			1118	1330	1401	1619	
1515	1670	1670	4500 1357	5350 1615	4500 1699	4500 1956	
1809	1990	1070	4300	5150	4300	4300	
1810	1990	1190	1074 4300	1300 5150	1365 4300	1590 4300	
			1137	1377	1453	1722	
1812	1990	1350	4500 1359	5350 1619	4500 1704	4500 1962	
1815	1990	1670	4550	5400	4500	4500	
1818	1990	1990	1524 4800	1826	1933 4750	2235 4750	
			1869	2212	2352	2694	
2409	2550	1070	4350 1281	5200 1601	4300 1637	4300 1957	
2412	2550	1350	4550	5400	4500	4500	
2415	2550	1670	1586 4700	1966 5550	2015 4650	2394 4650	
2115	2550	10/0	1964	2409	2465	2910	
2418	2550	1990	4800 2267	5650 2826	4750 2889	4750 3400	
2421	2550	2310	5050	5900	5000	5000	
2424	2550	2550	2797 5050	3293 5900	3481 5000	4009 5000	
2727	2550	2550	2993	3561	3770	4270	
3015	3190	1670	4800 2539	5650 2978	4750 3143	4750 3583	
3018	3190	1990	5050	5900	5000	5000	
3021	3190	2310	3059 5050	3556 5900	3824 5000	4322 5000	
5021	5150	2010	3307	3861	4095	4649	
3024	3190	2550	5100 3501	5950 4098	5050 4356	5050 4954	
3624	3790	2550	5100	5950	5050	5050	
2627	2700	2070	3977	4666	5119	5808	
3627	3790	2870	6650 5271	7500 6026	5950 6482	5950 7237	
3630	3790	3190	6950	7800	6250	6250	

We reserve the right to changes without prior notice.

	ength (mm)	44				
Le N	Weight(kg)					
	В	Н				
Size	(mm)	(mm)	Assembly 18	Assembly 19	Assembly 20	Assembly 22
0603	790	940	4700 679	5600 757	5100 773	5050 632
0605	790	1340	5100	6000	5600	5750
0606	790	1580	889 5100	982 6000	1019 5600	837 6150
0906	1070	1580	969 5100	1073 6000	1115 5600	956 6150
0909	1070	2140	1227 5200	1356 6100	1399 5800	1202 6850
			1472	1628	1704	1600
1206	1350	1580	5100 1399	6000 1551	5600 1592	6150 1411
1208	1350	1980	5600 1717	6500 1891	6200 1961	6950 1721
1209	1350	2140	5600 1781	6500 1975	6300 2058	7250 1878
1210	1350	2380	5600 1933	6500 2130	6300 2233	7250 2038
1212	1350	2700	5800 2129	6700 2343	6600 2483	7850 2340
1506	1670	1580	5150	6000	5650	6200
1509	1670	2140	1606 5650	1759 6500	1821 6250	1667 7300
1512	1670	2700	2145 6050	2346 6900	2437 6850	2299 8100
1515	1670	3340	2590 6250	2809 7100	2984 7250	2879 8300
			3103	3360	3622	3429
1809	1990	2140	5850 2440	6700 2664	6450 2770	7500 2660
1810	1990	2380	5850 2599	6700 2868	6650 2999	7500 2834
1812	1990	2700	6250 3109	7100 3367	7050 3550	8300 3393
1815	1990	3340	6300 3459	7150 3764	7300 4036	8350 3792
1818	1990	3980	6800	7650	7800	3/72
2409	2550	2140	4230 5900	4573 6750	4895 6500	7500
2412	2550	2700	2813 6300	3163 7150	3192 7100	3069 8300
			3457	3836	3961	3868
2415	2550	3340	6600 4573	7450 5017	7600 5224	8600 4681
2418	2550	2980	6800 5311	7650 5822	7800 6099	
2421	2550	4620	7280 6541	8130 7069		
2424	2550	5100	7280 7095	8130 7595		
3015	3190	3340	6800	7650	7800	
3018	3190	3980	5682 7300	6165 8150	6407 8300	
3021	3190	4620	7068 7280	7565 8130	7989	
3024	3190	5100	7419 7380	7973 8230		
			7910	8540		
3624	3790	5100	7380 9248	8230 9936		
3627	3790	5740	9830 11784	10680 12644		
3630	3790	6380	10430 12944	11280 13765		

Koja Group at your service

Diversified and progressive Koja Group offers the customers top-quality products and services in the field of air handling since 1935.

KojaLtd.

Koja designs and manufactures high-quality and reliable airhandling equipment with low lifecycle costs. The products are manufactured in Tampere and Jalasjärvi by applying modern production technologies to benefit our customers in terms of flexible and customised solutions and precise deliveries.

Koja's good indoor air-production equipment can be used in business, office, public and industrial buildings.

Koja Marine specialises in the design and supply of maritime airconditioning systems.

ECOFAN® process fans are at the heart of the industrial process. Energy-saving process fans operate in numerous locations around the world and are installed in power plant boilers and wood-processing industry processes, for example.

Tampere

Jalasjärvi

www.koja-russia.ru +7 (495) 204-30-01 8 (800) 775-42-13 E-mail: info@koja-russia.ru